CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee Frailty Is Intertwined With Heart Failure: Mechanisms, Prevalence, Prognosis, Assessment, and Management Association of loop diuretics use and dose with outcomes in outpatients with heart failure: a systematic review and meta-analysis of observational studies involving 96,959 patients Circulating sST2 and catestatin levels in patients with acute worsening of heart failure: a report from the CATSTAT-HF study Nitrosative stress drives heart failure with preserved ejection fraction Cardiac Resynchronization Therapy and Ventricular Tachyarrhythmia Burden Effects of Dapagliflozin on Symptoms, Function and Quality of Life in Patients with Heart Failure and Reduced Ejection Fraction: Results from the DAPA-HF Trial The spectrum of heart failure: value of left ventricular ejection fraction and its moving trajectories Diuretic Therapy for Patients With Heart Failure JACC State-of-the-Art Review sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T

Clinical Trial2020 Aug 8.

JOURNAL:Cardiovasc Drugs Ther. Article Link

Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: a Randomized, Double-Blind, Placebo-Controlled Study

AH Larsen, H Wiggers, Niels Jessen et al. Keywords: HF; hyperinsulinemic euglycemic clamp; Insulin sensitivity; metformin

ABSTRACT

PURPOSE - The glucose-lowering drug metformin has recently been shown to reduce myocardial oxygen consumption and increase myocardial efficiency in chronic heart failure (HF) patients without diabetes. However, it remains to be established whether these beneficial myocardial effects are associated with metformin-induced alterations in whole-body insulin sensitivity and substrate metabolism.


METHODS - Eighteen HF patients with reduced ejection fraction and without diabetes (median age, 65 (interquartile range 55–68); ejection fraction 39 ± 6%; HbA1c 5.5 to 6.4%) were randomized to receive metformin (n= 10) or placebo (n= 8) for 3 months. We studied the effects of metformin on whole-body insulin sensitivity using a two-step hyperinsulinemic euglycemic clamp incorporating isotope-labeled tracers of glucose, palmitate, and urea. Substrate metabolism and skeletal muscle mitochondrial respiratory capacity were determined by indirect calorimetry and high-resolution respirometry, and body composition was assessed by bioelectrical impedance analysis. The primary outcome measure was change in insulin sensitivity.


RESULTS - Compared with placebo, metformin treatment lowered mean glycated hemoglobin levels (absolute mean difference, − 0.2%; 95% CI − 0.3 to 0.0;p= 0.03), reduced body weight (− 2.8 kg; 95% CI − 5.0 to − 0.6;p= 0.02), and increased fasting glucagon levels (3.2 pmol L−1; 95% CI 0.4 to 6.0;p= 0.03). No changes were observed in whole-body insulin sensitivity, endogenous glucose production, and peripheral glucose disposal or oxidation with metformin. Equally, resting energy expenditure, lipid and urea turnover, and skeletal muscle mitochondrial respiratory capacity remained unaltered.


CONCLUSION - Increased myocardial efficiency during metformin treatment is not mediated through improvements in insulin action in HF patients without diabetes.


CLINICAL TRIAL REGISTRATION - URL: https://clinicaltrials.gov. Unique identifier: NCT02810132. Date of registration: June 22, 2016.