CBS 2019
CBSMD教育中心
English

剪应力

科研文章

荐读文献

Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study Coronary Microcirculation in Ischemic Heart Disease Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study High Coronary Shear Stress in Patients With Coronary Artery Disease Predicts Myocardial Infarction Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway
|<< 1 2 >>|

Clinical Trial2017 Aug;10(8). pii: e005455.

JOURNAL:Circ Cardiovasc Interv. Article Link

Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future: A Serial Optical Coherence Tomography and Computational Fluid Dynamics Study

Yamamoto E, Siasos G, Jang IK et al. Keywords: atherosclerosis; coronary vessels; shear stress; tomography, optical coherence

ABSTRACT


BACKGROUND - Low endothelial shear stress (ESS) is associated with plaque progression and vulnerability. To date, changes in plaque phenotype over time in relation to ESS have not been studied in humans. The aim of this study was to investigate whether local ESS can predict subsequent changes to plaque phenotype using optical coherence tomography.


METHODS AND RESULTS - A total of 25 coronary arteries from 20 patients who underwent baseline and 6-month follow-up optical coherence tomography were included. Arteries were divided into serial 3-mm segments, and plaque characteristics were evaluated in each segment. A total of 145 segments were divided into low-ESS group (ESS <1 Pa) and higher-ESS group (ESS ≥1 Pa) based on baseline computational flow dynamics analyses. At baseline, low-ESS segments had significantly thinner fibrous cap thickness compared with higher-ESS segments (128.2±12.3 versus 165.0±12.0 μm; P=0.03), although lipid arc was similar. At follow-up, fibrous cap thickness remained thin in low-ESS segments, whereas it significantly increased in higher-ESS segments (165.0±12.0 to 182.2±14.1 μm; P=0.04). Lipid arc widened only in plaques with low ESS (126.4±15.2° to 141.1±14.0°; P=0.01). After adjustment, baseline ESS was associated with fibrous cap thickness (β, 9.089; 95% confidence interval, 2.539-15.640; P=0.007) and lipid arc (β, -4.381; 95% confidence interval, -6.946 to -1.815; P=0.001) at follow-up.

CONCLUSIONS - Low ESS is significantly associated with baseline high-risk plaque phenotype and progression to higher-risk phenotype at 6 months.

CLINICAL TRIAL REGISTRATION - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01110538.

© 2017 American Heart Association, Inc.