CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients Early Versus Standard Discharge After Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients Transcatheter Laceration of Aortic Leaflets to Prevent Coronary Obstruction During Transcatheter Aortic Valve Replacement: Concept to First-in-Human A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial Comparative Accuracy of Focused Cardiac Ultrasonography and Clinical Examination for Left Ventricular Dysfunction and Valvular Heart Disease: A Systematic Review and Meta-analysis

Original ResearchSeptember 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Long-Term Durability of Transcatheter Heart Valves: Insights From Bench Testing to 25 Years

J Sathananthan, M Hensey, U Landes et al. Keywords: durability; transcatheter aortic valve replacement; transcatheter heart valve

ABSTRACT


OBJECTIVES - This study assessed the long-term durability of nominally deployed transcatheter heart valves (THV) to 1 billion cycles (equivalent to 25 years) and non-nominal (overexpansion, underexpansion, and elliptical) THV deployments to 200 million cycles (equivalent to 5 years) with accelerated wear testing.


METHODS - SAPIEN 3 THVs, sized 20, 23, 26, and 29 mm were assessed. Nominally deployed THVs underwent hydrodynamic performance and mechanical durability as assessed with accelerated wear testing to 1 billion cycles. Magna Ease surgical valves were used as comparators. Durability of non-nominal THV deployments was tested to 200 million cycles. Valves were tested to International Standards Organization 5840:2013 standard.


RESULTS - THV durability was excellent for both the nominal and non-nominal THV deployments to 1 billion and 200 million cycles, respectively. At 1 billion cycles the regurgitant fraction for the 20-, 23-, 26-, and 29-mm SAPIEN 3 was 0.92 ± 0.47%, 1.29 ± 0.04%, 1.73 ± 0.46%, and 2.47 ± 0.15%, respectively. There was also excellent durability in the comparator Magna Ease valves. The regurgitant fraction of non-nominal overexpanded (20 mm, 4.36 ± 0.53; 23 mm, 7.68 ± 1.39; 26 mm, 6.80 ± 1.17; 29 mm, 9.00 ± 0.37), underexpanded (20 mm, 3.06 ± 0.28; 23 mm, 4.46 ± 0.45; 26 mm, 7.72 ± 0.48; 29 mm, 8.65 ± 2.01), and elliptical (20 mm, 3.30 ± 0.38; 23 mm, 6.13 ± 0.94; 26 mm, 6.77 ± 1.22; 29 mm, 8.72 ± 0.24) THVs were excellent at 200 million cycles.


CONCLUSIONS - Nominal SAPIEN 3 THVs demonstrated excellent durability, to an equivalent of 25-years wear. THV durability was similar to the comparator surgical valves tested. Non-nominal (overexpansion, underexpansion, and elliptical) THV deployments also had excellent durability to an equivalent of 5-years wear.