CBS 2019
CBSMD教育中心
English

经导管主动脉瓣置换

科研文章

荐读文献

Minimalist transcatheter aortic valve replacement: The new standard for surgeons and cardiologists using transfemoral access? Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement Impact of Pre-Existing and New-Onset Atrial Fibrillation on Outcomes After Transcatheter Aortic Valve Replacement Determinants and Impact of Heart Failure Readmission Following Transcatheter Aortic Valve Replacement Coronary Protection to Prevent Coronary Obstruction During TAVR: A Multicenter International Registry Cardiac surgery following transcatheter aortic valve replacement Impact of Incomplete Coronary Revascularization on Late Ischemic and Bleeding Events after Transcatheter Aortic Valve Replacement Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis Coronary Access After TAVR With a Self-Expanding Bioprosthesis: Insights From Computed Tomography A Controlled Trial of Rivaroxaban After Transcatheter Aortic-Valve Replacement

Original ResearchVolume 12, Issue 21, November 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Pre-Existing and New-Onset Atrial Fibrillation on Outcomes After Transcatheter Aortic Valve Replacement

A Mentias, M Saad, S Girotra et al. Keywords: atrial fibrillation; bleeding; heart failure; mortality; stroke; TAVR

ABSTRACT


OBJECTIVES - This study sought to evaluate impact of new-onset and pre-existing atrial fibrillation (AF) on transcatheter aortic valve replacement (TAVR) long-term outcomes compared with patients without AF.

 

BACKGROUND - Pre-existing and new-onset AF in patients undergoing TAVR are associated with poor outcomes.

 

METHODS - The study identified 72,660 patients 65 years of age who underwent nonapical TAVR between 2014 and 2016 using Medicare inpatient claims. History of AF was defined by diagnoses on claims during the 3 years preceding the TAVR, and new-onset AF was defined as occurrence of AF during the TAVR admission or within 30 days after TAVR in a patient without prior history of AF. Outcomes included all-cause mortality, and readmission for bleeding, stroke, and heart failure (HF).

 

RESULTS - Overall, 40.7% had pre-existing AF (n = 29,563) and 6.8% experienced new-onset AF (n = 2,948) after TAVR. Mean age was 81.3, 82.4, and 83.8 years in patients with no AF, pre-existing, and new-onset AF, respectively. Pre-existing AF patients had the highest burden of comorbidities. After follow-up of 73,732 person-years, mortality was higher with new-onset AF compared with pre-existing and no AF (29.7, 22.6, and 12.8 per 100 person-years, respectively; p < 0.001). After adjusting for patient characteristics and hospital TAVR volume, new-onset AF remained associated with higher mortality compared with no AF (adjusted hazard ratio: 2.068, 95% confidence interval [CI]: 1.92 to 2.20; p < 0.01) and pre-existing AF (adjusted hazard ratio: 1.35; 95% CI: 1.26 to 1.45; p < 0.01). In competing risk analysis, new-onset AF was associated with higher risk of bleeding (subdistribution hazard ratio [sHR]: 1.66; 95% CI: 1.48 to 1.86; p < 0.01), stroke (sHR: 1.92; 95% CI: 1.63 to 2.26; p < 0.01), and HF (sHR: 1.98; 95% CI: 1.81 to 2.16; p < 0.01) compared with pre-existing AF.

 

CONCLUSIONS - In patients undergoing TAVR, new-onset AF is associated with increased risk of mortality and bleeding, stroke, and HF hospitalizations compared with pre-existing AF or no AF.