CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Self-expandable sirolimus-eluting stents compared to second-generation drug-eluting stents for the treatment of the left main: A propensity score analysis from the SPARTA and the FAILS-2 registries Superficial Calcium Fracture After PCI as Assessed by OCT New Evidence Supporting a Novel Conceptual Framework for Distinguishing Proportionate and Disproportionate Functional Mitral Regurgitation Pulmonary Artery Denervation for Patients With Residual Pulmonary Hypertension After Pulmonary Endarterectomy Long-Term Outcomes of Different Two-Stent Techniques With Second-Generation Drug-Eluting Stents for Unprotected Left Main Bifurcation Disease: Insights From the FAILS-2 Study Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion – an update Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture: 3-Vessel OCT Study Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification Restricted access Mortality After Repeat Revascularization Following PCI or CABG for Left Main Disease: The EXCEL Trial

LetterVolume 69, Issue 3, May 2017, Pages 407-410

JOURNAL:Indian Heart J. Article Link

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound

Dash D. Keywords: Percutaneous coronary intervention; Intravscular ultrasound; Optical coherence tomography; Vulnerable plaque; Biodegradable vascular scaffold

ABSTRACT

Intravascular imaging has improved our understanding of in vivo pathophysiology of coronary artery disease (CAD) and predicted decision-making in percutaneous coronary intervention (PCI). Intravascular ultrasound (IVUS) has emerged as the first clinical imaging method contributing significantly to modern PCI techniques. This modality has outlived many other intravascular techniques 26 years after its inception. It has assisted us in understanding dynamics of atherosclerosis and provides several unique insights into plaque burden, remodeling, and restenosis. It is useful as an imaging endpoint in large progression-regression trial and as workhorse in many catheterization laboratories. IVUS guidance appears to be most beneficial in complex lesion subsets that are being treated with drug-eluting stents. The recent introduction of optical coherence tomography (OCT), a light based imaging technique, has further expanded this field because of its higher resolution and faster image acquisition. The omnipresence of OCT raises the question: Does IVUS have a role in the era of OCT? Whether OCT is superior to IVUS in routine clinical practice? Even if OCT is currently gaining clinical significance in detailed planning of interventional strategies and stent optimization in complex lesion subsets, it is the much younger technique and has to prove its worth. Nevertheless, undoubtedly IVUS plays significant role in studies on coronary atherosclerosis and for guidance of PCI. In fact, both the methods are complementary rather than competitive.