CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Last nail in the coffin for PCI in stable angina? Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischaemic stroke Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data Triage Considerations for Patients Referred for Structural Heart Disease Intervention During the Coronavirus Disease 2019 (COVID-19) Pandemic: An ACC /SCAI Consensus Statement Clinical Efficacy and Safety of Evolocumab in High-Risk Patients Receiving a Statin: Secondary Analysis of Patients With Low LDL Cholesterol Levels and in Those Already Receiving a Maximal-Potency Statin in a Randomized Clinical Trial Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series Implantable Hemodynamic Monitoring for Heart Failure Patients Future of Personalized Cardiovascular Medicine

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: exercise; gas exchange analysis; heart failure; oxygen consumption

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.