CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost Generalizing Intensive Blood Pressure Treatment to Adults With Diabetes Mellitus Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Mortality 10 Years After Percutaneous or Surgical Revascularization in Patients With Total Coronary Artery Occlusions ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial

Review Article2017 Aug 1;70(5):590-606.

JOURNAL:J Am Coll Cardiol. Article Link

Translational Perspective on Epigenetics in Cardiovascular Disease

van der Harst P, de Windt LJ, Chambers JC Keywords: EWAS; HAT; HDAC; RNA; histones; methylation

ABSTRACT

A plethora of environmental and behavioral factors interact, resulting in changes in gene expression and providing a basis for the development and progression of cardiovascular diseases. Heterogeneity in gene expression responses among cells and individuals involves epigenetic mechanisms. Advancing technology allowing genome-scale interrogation of epigenetic marks provides a rapidly expanding view of the complexity and diversity of the epigenome. In this review, the authors discuss the expanding landscape of epigenetic modifications and highlight their importance for future understanding of disease. The epigenome provides a mechanistic link between environmental exposures and gene expression profiles ultimately leading to disease. The authors discuss the current evidence for transgenerational epigenetic inheritance and summarize the data linking epigenetics to cardiovascular disease. Furthermore, the potential targets provided by the epigenome for the development of future diagnostics, preventive strategies, and therapy for cardiovascular disease are reviewed. Finally, the authors provide some suggestions for future directions.