CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Cutoff Value and Long-Term Prediction of Clinical Events by FFR Measured Immediately After Implantation of a Drug-Eluting Stent in Patients With Coronary Artery Disease: 1- to 3-Year Results From the DKCRUSH VII Registry Study Randomized Comparison of FFR-Guided and Angiography-Guided Provisional Stenting of True Coronary Bifurcation Lesions: The DKCRUSH-VI Trial (Double Kissing Crush Versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions VI) Prognostic Value of Fractional Flow Reserve Measured Immediately After Drug-Eluting Stent Implantation Influence of Local Myocardial Damage on Index of Microcirculatory Resistance and Fractional Flow Reserve in Target and Nontarget Vascular Territories in a Porcine Microvascular Injury Model FFR-guided multivessel stenting reduces urgent revascularization compared with infarct-related artery only stenting in ST-elevation myocardial infarction: A meta-analysis of randomized controlled trials Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial

Original Research2014 Mar 1;83(4):545-52.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Functional and morphological assessment of side branch after left main coronary artery bifurcation stenting with cross-over technique

Kang SJ, Ahn JM, Kim WJ et al. Keywords: fractional flow reserve; left main coronary artery stenosis; sidebranch

ABSTRACT


BACKGROUND - In left main coronary artery (LMCA) bifurcation lesions, hemodynamic and geometrical change in left circumflex artery (LCX) ostium after main branch (MB) stenting has not been known. This study evaluated how accurately intravascular ultrasound (IVUS) predicts the functional compromise of the sidebranch.


METHODS - A single-stent cross-over technique was used to treat LMCA bifurcation lesions in 43 patients with LCX ostial diameter stenosis (DS) of <50%. The fractional flow reserve (FFR) in the LCX was measured after MB stenting, MB and sidebranch pullback IVUS was performed prestenting and poststenting.


RESULTS - After MB stenting, angiographic DS >50% at the LCX ostium was observed in 18 (42%) patients, while only 3 (7%) showed FFR <0.80. A pre-procedural minimal lumen area (MLA) of <3.7 mm(2) within the LCX ostium was predictive of a poststenting FFR <0.80, with a sensitivity of 100%, specificity of 71%, a positive predictive value (PPV) of 16%, and a negative predictive value (NPV) of 100% (area under curve 0.80, P < 0.001). Moreover, pre-procedural plaque burden of >56% at the LCX ostium predicted FFR <0.80, with a sensitivity of 100%, specificity of 65%, a PPV of 14%, and a NPV of 100% (area under curve 0.80, P < 0.001). A poststenting LCX ostial DS >57% predicted FFR <0.80 with a sensitivity of 100%, specificity of 88%, a PPV of 38% and a NPV of 100% (area under curve 0.962, P < 0.001). However, the poststenting MLA within the LCX ostium showed no significant correlation with FFR (r = 0.197, P = 0.391).


CONCLUSIONS - In LMCA bifurcation lesions with mild LCX ostial disease, the use of single-stent technique rarely resulted in the functional LCX compromise. Because the functional LCX stenosis is poorly predicted by a small MLA, sidebranch treatment should be based on the poststenting FFR.

 

Copyright © 2013 Wiley Periodicals, Inc.