CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

A systematic review of factors predicting door to balloon time in ST-segment elevation myocardial infarction treated with percutaneous intervention Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: A six-year experience Pharmacoinvasive and Primary Percutaneous Coronary Intervention Strategies in ST-Elevation Myocardial Infarction (from the Mayo Clinic STEMI Network) Oxygen Therapy in Suspected Acute Myocardial Infarction Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention Aggressive Measures to Decrease Causes of delay and associated mortality in patients transferred with ST-segment-elevation myocardial infarction Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry

Clinical Trial2021 Aug 1;152:34-42.

JOURNAL:Am J Cardiol. Article Link

Effect of Lipoprotein (a) Levels on Long-term Cardiovascular Outcomes in Patients with Myocardial Infarction with Nonobstructive Coronary Arteries

SD Gao, WJ Ma, MY Yu Keywords: Lp(a); MINOCA; STEMI; prognostic value; MACE

ABSTRACT

The association between elevated lipoprotein(a) [Lp(a)] and poor outcomes in coronary artery disease (CAD) has been addressed for decades. However, little is known about the prognostic value of Lp(a) in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA). A total of 1179 patients with MINOCA were enrolled and divided into low, medium, and high Lp(a) groups based on the cut-off value of 10 and 30mg/dL. The primary endpoint was major adverse cardiovascular events (MACE), a composite of all-cause death, nonfatal MI, nonfatal stroke, revascularization, and hospitalization for unstable angina or heart failure. Kaplan-Meier and Cox regression analyses were performed. Accuracy was defined as area under the curve (AUC) using a receiver-operating characteristic analysis. Patients with higher Lp(a) levels had a significantly higher incidence of MACE (9.5%, 14.6%, 18.5%; p = 0.002) during the median follow-up of 41.7 months. The risk of MACE also increased with the rising Lp(a) levels even after multivariate adjustment [low Lp(a) group as reference, medium group: hazard ratio (HR) 1.55, 95% confidence interval (CI): 1.02-2.40, p = 0.047; high group: HR 2.07, 95% CI: 1.32-3.25, p = 0.001]. Further, clinically elevated Lp(a) defined as Lp(a) ≥30 mg/dL was closely associated with an increased risk of MACE in overall and in subgroups (all p <0.05). When adding Lp(a) (AUC 0.61) into the Thrombolysis in Myocardial Infarction (TIMI) score (AUC 0.68), the combined model (AUC 0.73) yielded a significant improvement in discrimination for MACE (ΔAUC 0.05, p = 0.032). In conclusion, elevated Lp(a) was strongly associated with a poor prognosis in patients with MINOCA. Adding Lp(a) to traditional risk score further improved risk prediction. Our data, for the first time, confirmed the Lp(a) as a residual risk factor for MINOCA.