CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum Long-Term Outcomes of Patients With Mediastinal Radiation–Associated Coronary Artery Disease Undergoing Coronary Revascularization With Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting Superficial Calcium Fracture After PCI as Assessed by OCT Angiography Alone Versus Angiography Plus Optical Coherence Tomography to Guide Percutaneous Coronary Intervention Outcomes From the Pan-London PCI Cohort Coronary Atherosclerosis T1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging The Art of SAPIEN 3 Transcatheter Mitral Valve Replacement in Valve-in-Ring and Valve-in-Mitral-Annular-Calcification Procedures Single direct oral anticoagulant therapy in stable patients with atrial fibrillation beyond 1 year after coronary stent implantation Transverse partial stent ablation with rotational atherectomy for suboptimal culotte technique in left main stem bifurcation

Original Research2017 May 15;119(10):1512-1517.

JOURNAL:Am J Cardiol. Article Link

Comparison of Coronary Intimal Plaques by Optical Coherence Tomography in Arteries With Versus Without Internal Running Vasa Vasorum

Amano H, Koizumi M, Okubo R et al. Keywords: OCT; internal running vasa vasorum; plaque vulnerability; blood flow

ABSTRACT


It has been reported that the internal running vasa vasorum (VV) was associated with plaque vulnerability, and microchannels in optical coherence tomography (OCT) are consistent pathologically with VV. We investigated plaque vulnerability and incidence of slow flow during percutaneous coronary intervention of the internal longitudinal running VV. Subjects were 71 lesions that underwent OCT before percutaneous coronary intervention. Internal running VV was defined as intraplaque neovessels running from the adventitia to plaque. Lesions with internal running VV were found in 47% (33 of 71). Compared with lesions without internal running VV, lesions with internal running VV showed significantly higher incidence of intimal laceration (64% [21 of 33] vs 16% [6 of 38], p <0.001), lipid-rich plaque (79% [26 of 33] vs 26% [10 of 38], p <0.001), plaque rupture (52% [17 of 33] vs 13% [5 of 38], p <0.001), thin-cap fibroatheroma (58% [19 of 33] vs 11% [4 of 38], p <0.001), macrophage accumulation (61% [20 of 33] vs 26% [10 of 38], p = 0.004), intraluminal thrombus (36% [12 of 33] vs 3% [1 of 38], p <0.001), and slow flow after stent implantation (42% [14 of 33] vs 13% [5 of 38], p = 0.007). The multivariable analysis showed that internal running VV was an independent predictor of slow flow after stent implantation (odds ratio 4.23, 95% confidence interval 1.05 to 17.01, p = 0.042). In conclusion, compared with those without, plaques with internal running VV in OCT had high plaque vulnerability with more intimal laceration, lipid-rich plaque, plaque rupture, thin-cap fibroatheroma, macrophage accumulation, and intraluminal thrombus, and they had high incidence of slow flow after stent implantation.