CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines 稳定性冠心病诊断与治疗指南 Mortality 10 Years After Percutaneous or Surgical Revascularization in Patients With Total Coronary Artery Occlusions The spectrum of chronic coronary syndromes: genetics, imaging, and management after PCI and CABG Systems of Care for ST-Segment–Elevation Myocardial Infarction: A Policy Statement From the American Heart Association Multivessel Versus Culprit-Vessel Percutaneous Coronary Intervention in Cardiogenic Shock Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Generalizing Intensive Blood Pressure Treatment to Adults With Diabetes Mellitus Prevalence of Angina Among Primary Care Patients With Coronary Artery Disease Mode of Death in Heart Failure With Preserved Ejection Fraction

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.