CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Cardiovascular Biomarkers and Imaging in Older Adults: JACC Council Perspectives Digital learning and the future cardiologist Double kissing crush in left main coronary bifurcation lesions: A crushing blow to the rival stenting techniques Society of cardiac angiography and interventions: suggested management of the no-reflow phenomenon in the cardiac catheterization laboratory A prospective natural-history study of coronary atherosclerosis Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Considerations for Single-Measurement Risk-Stratification Strategies for Myocardial Infarction Using Cardiac Troponin Assays Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review Myocardial Infarction in Young Women

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.