CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives Will Pulmonary Artery Denervation Really Have a Place in the Armamentarium of the Pulmonary Hypertension Specialist? Haemodynamic definitions and updated clinical classification of pulmonary hypertension Atrial Fibrillation: JACC Council Perspectives Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity

Review Article2018 Sep;72(3):179-185.

JOURNAL:J Cardiol. Article Link

Histopathological validation of optical coherence tomography findings of the coronary arteries

Fujii K, Kawakami R, Hirota S. Keywords: atherosclerosis; OCT; Stent; histopathological validation

ABSTRACT


Optical coherence tomography (OCT), a catheter-based imaging modality for the visualization of coronary arteries, is widely used during percutaneous coronary intervention to improve the understanding of the anatomy of coronary artery stenosis and to elucidate the mechanisms of atherosclerosis. In this review, we provide a short description of the histopathological validations of OCT for visualizing atherosclerotic plaques and vascularhealing response after drug-eluting stent (DES) implantation. Because OCT measures the intensity of light returning from within a tissue, tissue having a higher heterogeneity of optical index of refraction, such as microcalcification deposition and foam cell accumulation on the luminal surface, may exhibit stronger optical scattering that appears as a thin-cap fibroatheroma image. Furthermore, even if OCT shows exposed uncovered stent struts, some of the struts could be re-endothelialized. In our ex vivo histopathological experience, re-endothelialization at the surface of stent struts was confirmed by histopathological analysis, although OCT images showed exposed uncovered struts after DES implantation. Therefore, careful interpretation is required to assess tissue morphology and stent strut coverage by OCT.