CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention in acute coronary syndromes (IVUS-ACS): a two-stage, multicentre, randomised trial m6A Modification of Profilin-1 in Vascular Smooth Muscle Cells Drives Phenotype Switching and Neointimal Hyperplasia via Activation of the p-ANXA2/STAT3 Pathway Rationale and design of the Women's Ischemia Trial to Reduce Events in Nonobstructive CAD (WARRIOR) trial GRK2–YAP signaling is implicated in pulmonary arterial hypertension development Establishment of a canine model of pulmonary arterial hypertension induced by dehydromonocrotaline and ultrasonographic study of right ventricular remodeling Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person Intravascular Ultrasound vs Angiography-Guided Drug-Coated Balloon Angioplasty: The ULTIMATE Ⅲ Trial High-Risk Plaques on Coronary Computed Tomography Angiography: Correlation With Optical Coherence Tomography Low‑Shear Stress Promotes Atherosclerosis via Inducing Endothelial Cell Pyroptosis Mediated by IKKε/STAT1/NLRP3 Pathway Drug-Coated Balloon Angioplasty of the Side Branch During Provisional Stenting: The Multicenter Randomized DCB-BIF Trial

Original Research2019 Feb;7(2):132-142.

JOURNAL:JACC Heart Fail. Article Link

3D Printing and Heart Failure: The Present and the Future

Farooqi KM, Cooper C, Chelliah A et al. Keywords: 3D printing; cardiac computed tomography; cardiac magnetic resonance; heart failure

ABSTRACT


Advanced imaging modalities provide essential anatomic and spatial information in patients with complex heart disease. Two-dimensional imaging can be limited in the extent to which true 3-dimensional (3D) relationships are represented. The application of 3D printing technology has increased the creation of physical models that overcomes the limitations of a 2D screen. Many groups have reported the use of 3D printing for preprocedural planning in patients with different causes of heart failure. This paper reviews the innovative applications of this technique to provide patient-specific models to improve patient care.