CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Feasibility and efficacy of the ultrashort side branch dedicated balloon in coronary bifurcation stenting Inhibition of Platelet Aggregation After Coronary Stenting in Patients Receiving Oral Anticoagulation 10-Year Outcomes of Stents Versus Coronary Artery Bypass Grafting for Left Main Coronary Artery Disease Bayesian Interpretation of the EXCEL Trial and Other Randomized Clinical Trials of Left Main Coronary Artery Revascularization Drug-eluting stent implantation in patients with acute coronary syndrome - the Activity of Platelets after Inhibition and Cardiovascular Events: Optical Coherence Tomography (APICE OCT) study Intravascular Imaging and 12-Month Mortality After Unprotected Left Main Stem PCI: An Analysis From the British Cardiovascular Intervention Society Database Comprehensive Investigation of Circulating Biomarkers and their Causal Role in Atherosclerosis-related Risk Factors and Clinical Events Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease Left atrial appendage occlusion in atrial fibrillation patients with previous intracranial bleeding: A national multicenter study When, where, and how to target vascular inflammation in the post-CANTOS era?

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.