CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Pooled Analysis of Bleeding, Major Adverse Cardiovascular Events, and All-Cause Mortality in Clinical Trials of Time-Constrained Dual-Antiplatelet Therapy After Percutaneous Coronary Intervention Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls Trial Design Principles for Patients at High Bleeding Risk Undergoing PCI: JACC Scientific Expert Panel Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes Long-term dual antiplatelet-induced intestinal injury resulting in translocation of intestinal bacteria into blood circulation increased the incidence of adverse events after PCI in patients with coronary artery disease 'Ticagrelor alone vs. dual antiplatelet therapy from 1 month after drug-eluting coronary stenting among patients with STEMI': a post hoc analysis of the randomized GLOBAL LEADERS trial Evolution of antithrombotic therapy in patients undergoing percutaneous coronary intervention: a 40-year journey Ticagrelor Monotherapy Versus Ticagrelor With Aspirin in Patients With ST-Segment Elevation Myocardial Infarction Dual-Antiplatelet Therapy Cessation and Cardiovascular Risk in Relation to Age: Analysis From the PARIS Registry

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.