CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Regional Heterogeneity in the Coronary Vascular Response in Women With Chest Pain and Nonobstructive Coronary Artery Disease Aortic Valve Stenosis Treatment Disparities in the Underserved JACC Council Perspectives 2019 Guidelines on Diabetes, Pre-Diabetes and Cardiovascular Diseases developed in collaboration with the EASD ESC Clinical Practice Guidelines Optimal duration of dual antiplatelet therapy after drug-eluting stent implantation: a randomized, controlled trial. Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Chimney technique in a TAVR-in-TAVR procedure with high risk of left main artery ostium occlusion Clopidogrel or ticagrelor in acute coronary syndrome patients treated with newer-generation drug-eluting stents: CHANGE DAPT Noninvasive Nuclear SPECT Myocardial Blood Flow Quantitation to Guide Management for Coronary Artery Disease Impact of Intravascular Ultrasound-Guided Drug-Eluting Stent Implantation on Patients With Chronic Kidney Disease: Subgroup Analysis From ULTIMATE Trial Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial

Original Research

JOURNAL:ACC Article Link

TAVR: Role of Multimodality Imaging

Pre-reading

The following are key points to remember from this state-of-the-art review on transcatheter aortic valve replacement (TAVR) and the role of multimodality imaging in common and complex clinical scenarios:

  1. 1. TAVR has rapidly become an established therapy for patients with symptomatic severe aortic stenosis (AS).
  2. 2. Technological advances and the learning curve have resulted in better procedural results in terms of hemodynamic valve performance and intermediate-term clinical outcomes.
  3. 3. The integration of anatomical and functional information provided by multimodality imaging has improved size selection of TAVR prostheses, permitted better patient selection, and provided new insights in the performance of the TAVR prostheses at follow-up.
  4. 4. The use of 3D imaging techniques (multi-detector row computed tomography [MDCT], cardiac magnetic resonance [CMR], and 3D echocardiography) that permit accurate measurement of the left ventricular outflow tract area by direct planimetry has demonstrated the ability to reclassify severe AS patients into moderate AS by 12% in patients with low-flow, low-gradient severe AS.
  5. 5. Furthermore, the field of TAVR continues to develop and expand the technique to younger patients with lower risk on the one hand, and more complex clinical scenarios, on the other hand, such as degenerated aortic bioprostheses, bicuspid aortic valves, or pure native aortic regurgitation.
  6. 6. The use of both echocardiography and MDCT is key in the diagnosis of patients with severe AS who may benefit from TAVR as well as in the procedural planning and evaluation of the results at follow-up.
  7. 7. The number of patients with bicuspid AS treated with TAVR is increasing and the TAVR results with the use of new generation prostheses are promising.
  8. 8. TAVR in degenerated bioprosthesis has been an important recent breakthrough because re-operation in these individuals is associated with very high mortality.
  9. 9. Patients with native aortic regurgitation are also now being treated with TAVR.
  10. 10. These newer indications for TAVR need careful imaging evaluation of the anatomy of the landing zone to ensure successful anchoring of the TAVR prosthesis and to minimize complications. These new horizons for TAVR are making multimodality imaging critically important for this evolving therapy.