CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study Classic crush and DK crush stenting techniques Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) Long-term Survival following Multivessel Revascularization in Patients with Diabetes (FREEDOM Follow-On Study) Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials

Original Research2021 Mar 22.

JOURNAL:J Proteome Res. Article Link

Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis

WP Liu, PF Guo, T Dai Keywords: diabetes coronary heart disease metabolomics metabolism

ABSTRACT

Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01–1.12) and lactose (OR: 2.46, 95% CI: 1.67–3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.