CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

De-escalation of antianginal medications after successful chronic total occlusion percutaneous coronary intervention: Frequency and relationship with health status New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Stent fracture is associated with a higher mortality in patients with type-2 diabetes treated by implantation of a second-generation drug-eluting stent Prospective Elimination of Distal Coronary Sinus to Left Atrial Connection for Atrial Fibrillation Ablation (PRECAF) Randomized Controlled Trial Defining Staged Procedures for Percutaneous Coronary Intervention Trials A Guidance Document Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non-ST-Segment Elevation Acute Coronary Syndrome Impact of age and comorbidity on risk stratification in idiopathic pulmonary arterial hypertension

Original Research2021 Mar 22.

JOURNAL:J Proteome Res. Article Link

Metabolic Interactions and Differences between Coronary Heart Disease and Diabetes Mellitus: A Pilot Study on Biomarker Determination and Pathogenesis

WP Liu, PF Guo, T Dai Keywords: diabetes coronary heart disease metabolomics metabolism

ABSTRACT

Comprehensive understanding of plasma metabotype of diabetes mellitus (DM), coronary heart disease (CHD), and especially diabetes mellitus with coronary heart disease (CHDDM) is still lacking. In this work, the plasma metabolic differences and links of DM, CHD, and CHDDM patients were investigated by the strategy of comparative metabolomics based on 1H NMR spectroscopy combined with network analysis for revealing their metabolic differences. A total of 17 metabolites are related to three diseases, among which valine, alanine, leucine, isoleucine, and N-acetyl-glycoprotein are positively correlated with CHD and CHDDM (odds ratios (OR) > 1). The trimethylamine oxide, glycerol, lactose, indoleacetate, and scyllo-inositol are closely related to the development of DM to CHDDM (OR > 1), and indoleactate (OR: 1.06, 95% confidence interval (CI): 1.01–1.12) and lactose (OR: 2.46, 95% CI: 1.67–3.25) are particularly prominent in CHDDM. We identified three multi-biomarkers types that were significantly associated with glycosylated hemoglobin (HbA1C) at baseline. All diseases demonstrated dysregulated glycolysis/gluconeogenesis and amino acid biosynthesis pathway. In addition, enrichment in tryptophan metabolism observed in CHDDM, enrichment in inositol phosphate metabolism observed in DM, and the metabolites related to microbiota metabolism were dysregulated in both DM and CHDDM. The comparative metabolomics strategy of multi-diseases offers a new perspective in disease-specific markers and pathogenic pathways.