CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention in acute coronary syndromes (IVUS-ACS): a two-stage, multicentre, randomised trial Rationale and design of the Women's Ischemia Trial to Reduce Events in Nonobstructive CAD (WARRIOR) trial m6A Modification of Profilin-1 in Vascular Smooth Muscle Cells Drives Phenotype Switching and Neointimal Hyperplasia via Activation of the p-ANXA2/STAT3 Pathway Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person GRK2–YAP signaling is implicated in pulmonary arterial hypertension development Establishment of a canine model of pulmonary arterial hypertension induced by dehydromonocrotaline and ultrasonographic study of right ventricular remodeling Intravascular Ultrasound vs Angiography-Guided Drug-Coated Balloon Angioplasty: The ULTIMATE Ⅲ Trial High-Risk Plaques on Coronary Computed Tomography Angiography: Correlation With Optical Coherence Tomography Drug-Coated Balloon Angioplasty of the Side Branch During Provisional Stenting: The Multicenter Randomized DCB-BIF Trial Low‑Shear Stress Promotes Atherosclerosis via Inducing Endothelial Cell Pyroptosis Mediated by IKKε/STAT1/NLRP3 Pathway

Original Research2017 May 11;376(19):1824-1834.

JOURNAL:N Engl J Med. Article Link

Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

Davies JE, Sen S, Dehbi HM et al. Keywords: iFR; FFR; stable angina; ACS; coronary-artery stenosis; non inferiority; MACE

ABSTRACT



BACKGROUND - Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR.


METHODS - We randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk.

RESULTS - At 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, -0.2 percentage points; 95% confidence interval [CI], -2.3 to 1.8; P<0.001 for noninferiority; hazard ratio, 0.95; 95% CI, 0.68 to 1.33; P=0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P=0.001).

CONCLUSIONS - Coronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. (Funded by Philips Volcano; DEFINE-FLAIR ClinicalTrials.gov number, NCT02053038 .).