CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Statin Effects on Vascular Calcification: Microarchitectural Changes in Aortic Calcium Deposits in Aged Hyperlipidemic Mice Sox17 Controls Emergence and Remodeling of Nestin-Expressing Coronary Vessels Cellular origin and developmental program of coronary angiogenesis Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression Everolimus-eluting stent implantation for unprotected left main coronary artery stenosis. The PRECOMBAT-2 (Premier of Randomized Comparison of Bypass Surgery versus Angioplasty Using Sirolimus-Eluting Stent in Patients with Left Main Coronary Artery Disease) study Self-expandable sirolimus-eluting stents compared to second-generation drug-eluting stents for the treatment of the left main: A propensity score analysis from the SPARTA and the FAILS-2 registries Long-Term Clinical Outcomes and Optimal Stent Strategy in Left Main Coronary Bifurcation Stenting Superficial Calcium Fracture After PCI as Assessed by OCT Machine Learning Using CT-FFR Predicts Proximal Atherosclerotic Plaque Formation Associated With LAD Myocardial Bridging 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)

EditorialOctober 2017, Volume 10, Issue 10

JOURNAL:Circ Cardiovasc Imaging. Article Link

High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else?

Akiko Maehara, Gregg W. Stone Keywords: calcium death, sudden, cardiac, humans risk factors

ABSTRACT

Cardiac death and myocardial infarction usually result from thrombotic occlusion of a coronary artery with underlying atherosclerotic plaque. Histologically, most underlying plaques that have resulted in sudden cardiac death or myocardial infarction because of coronary thrombosis (vulnerable plaque) are ruptured thin-cap fibroatheromas with large plaque burden and a lipid-rich necrotic core. Second most common are erosions of proteoglycan-rich plaques with thrombosis, despite an intact fibrous cap. The extent that macroscopic or microscopic calcification contributes to plaque instability and thrombosis is controversial. Both fibroatheromas and erosion-prone plaques may be calcified and, occasionally, an isolated calcified nodule has been associated with coronary thrombosis. Using noninvasive and invasive imaging techniques, new in vivo insights into the role of calcification in patient and plaque vulnerability are emerging. The computed tomography (CT)-derived coronary artery calcium score (CACS) accounts for the area and the maximum density of each detected calcium deposit in the entire coronary tree and has proven useful in predicting future cardiovascular events in asymptomatic patients at intermediate risk. CT angiography has demonstrated that hypolucent plaques with positive remodeling or a napkin-ring sign predict future cardiac death, myocardial infarction, or acute coronary syndromes (ACS; patient-level analysis). Finally, prospective intravascular ultrasound (IVUS) studies have shown that a large plaque burden, small minimal lumen area (MLA), and composition consistent with a thin-cap fibroatheroma by radiofrequency analysis identifies those plaques that are likely to cause future adverse cardiovascular events (lesion-level analysis). In this regard, coronary calcification has been correlated with plaque burden but not luminal stenosis. Reconciling these differences, especially the apparent discordance between plaque burden, coronary calcium, and lipid as risk factors is a matter of importance.