CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Pulmonary Artery Denervation for Patients With Residual Pulmonary Hypertension After Pulmonary Endarterectomy Long-term safety and effectiveness of unprotected left main coronary stenting with drug-eluting stents compared with bare-metal stents Outcomes of patients with and without baseline lipid-lowering therapy undergoing revascularization for left main coronary artery disease: analysis from the EXCEL trial A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture: 3-Vessel OCT Study OCT guidance during stent implantation in primary PCI: A randomized multicenter study with nine months of optical coherence tomography follow-up Restricted access Mortality After Repeat Revascularization Following PCI or CABG for Left Main Disease: The EXCEL Trial Impact of large periprocedural myocardial infarction on mortality after percutaneous coronary intervention and coronary artery bypass grafting for left main disease: an analysis from the EXCEL trial C-reactive protein and prognosis after percutaneous coronary intervention and bypass graft surgery for left main coronary artery disease: Analysis from the EXCEL trial Definition and Management of Segmental Pulmonary Hypertension

EditorialOctober 2017, Volume 10, Issue 10

JOURNAL:Circ Cardiovasc Imaging. Article Link

High-Risk Coronary Atherosclerosis Is It the Plaque Burden, the Calcium, the Lipid, or Something Else?

Akiko Maehara, Gregg W. Stone Keywords: calcium death, sudden, cardiac, humans risk factors

ABSTRACT

Cardiac death and myocardial infarction usually result from thrombotic occlusion of a coronary artery with underlying atherosclerotic plaque. Histologically, most underlying plaques that have resulted in sudden cardiac death or myocardial infarction because of coronary thrombosis (vulnerable plaque) are ruptured thin-cap fibroatheromas with large plaque burden and a lipid-rich necrotic core. Second most common are erosions of proteoglycan-rich plaques with thrombosis, despite an intact fibrous cap. The extent that macroscopic or microscopic calcification contributes to plaque instability and thrombosis is controversial. Both fibroatheromas and erosion-prone plaques may be calcified and, occasionally, an isolated calcified nodule has been associated with coronary thrombosis. Using noninvasive and invasive imaging techniques, new in vivo insights into the role of calcification in patient and plaque vulnerability are emerging. The computed tomography (CT)-derived coronary artery calcium score (CACS) accounts for the area and the maximum density of each detected calcium deposit in the entire coronary tree and has proven useful in predicting future cardiovascular events in asymptomatic patients at intermediate risk. CT angiography has demonstrated that hypolucent plaques with positive remodeling or a napkin-ring sign predict future cardiac death, myocardial infarction, or acute coronary syndromes (ACS; patient-level analysis). Finally, prospective intravascular ultrasound (IVUS) studies have shown that a large plaque burden, small minimal lumen area (MLA), and composition consistent with a thin-cap fibroatheroma by radiofrequency analysis identifies those plaques that are likely to cause future adverse cardiovascular events (lesion-level analysis). In this regard, coronary calcification has been correlated with plaque burden but not luminal stenosis. Reconciling these differences, especially the apparent discordance between plaque burden, coronary calcium, and lipid as risk factors is a matter of importance.