CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Edoxaban versus Dual Antiplatelet Therapy for Leaflet Thrombosis and Cerebral Thromboembolism after TAVR: The ADAPT-TAVR Randomized Clinical Trial Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study The Relation Between Optical Coherence Tomography-Detected Layered Pattern and Acute Side Branch Occlusion After Provisional Stenting of Coronary Bifurcation Lesions Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve Minimum Core Data Elements for Evaluation of TAVR: A Scientific Statement by PASSION CV, HVC, and TVT Registry Apolipoprotein A-V is a potential target for treating coronary artery disease: evidence from genetic and metabolomic analyses Pulmonary Artery Denervation Using Catheter based Ultrasonic Energy Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress–Induced, Piezo-1–Mediated Monocyte Activation Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry

Original Research2011 Aug;32(16):2059-66.

JOURNAL:Eur Heart J. Article Link

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis

Hong YJ, Jeong MH, Choi YH et al. Keywords: coronary disease, stents, plaque, ultrasonics

ABSTRACT


AIMS We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.


METHODS AND RESULTS - A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).

CONCLUSION - In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.