CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Drug-Coated Balloon-Only Percutaneous Coronary Intervention for the Treatment of De Novo Coronary Artery Disease: A Systematic Review Optical Coherence Tomography Predictors for Recurrent Restenosis After Paclitaxel-Coated Balloon Angioplasty for Drug-Eluting Stent Restenosis Chronic Total Occlusion Interventions: Update on Current Tips and Tricks Evolution of the Crush Technique for Bifurcation Stenting Fractional Flow Reserve–Guided PCI as Compared with Coronary Bypass Surgery Applications of left ventricular strain measurements to patients undergoing chemotherapy Comparison of new-generation drug-eluting stents versus drug-coated balloon for in-stent restenosis: a meta-analysis of randomised controlled trials Sustainable Antirestenosis Effect With a Low-Dose Drug-Coated Balloon: The ILLUMENATE European Randomized Clinical Trial 2-Year Results Multicentre, randomized comparison of two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: the DEFINITION II trial In vivo comparison of lipid-rich plaque on near-infrared spectroscopy with histopathological analysis of coronary atherectomy specimens

Original Research2011 Aug;32(16):2059-66.

JOURNAL:Eur Heart J. Article Link

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis

Hong YJ, Jeong MH, Choi YH et al. Keywords: coronary disease, stents, plaque, ultrasonics

ABSTRACT


AIMS We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.


METHODS AND RESULTS - A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).

CONCLUSION - In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.