CBS 2019
CBSMD教育中心
English

科学研究

科研文章

荐读文献

Impact of Transcatheter Mitral Valve Repair on Preprocedural and Postprocedural Hospitalization Rates Percutaneous Left Atrial Appendage Occlusion for Patients in Atrial Fibrillation Suboptimal for Warfarin Therapy: 5-year Results of the PLAATO (Percutaneous Left Atrial Appendage Transcatheter Occlusion) Study Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients With Cancer Prospective Evaluation of Transseptal TMVR for Failed Surgical Bioprostheses: MITRAL Trial Valve-in-Valve Arm 1-Year Outcomes Risk of Cardiovascular Diseases Among Older Breast Cancer Survivors in the United States: A Matched Cohort Study Implications of the local hemodynamic forces on the formation and destabilization of neoatherosclerotic lesions Strain-Guided Management of Potentially Cardiotoxic Cancer Therapy Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization Long-Term Outcomes of Patients With Mediastinal Radiation–Associated Coronary Artery Disease Undergoing Coronary Revascularization With Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting Cardio-oncology: A Focus on Cardiotoxicity

Original Research2011 Aug;32(16):2059-66.

JOURNAL:Eur Heart J. Article Link

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis

Hong YJ, Jeong MH, Choi YH et al. Keywords: coronary disease, stents, plaque, ultrasonics

ABSTRACT


AIMS We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.


METHODS AND RESULTS - A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).

CONCLUSION - In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.